"New Directions in ADHD and Autism: Assessment and Treatment"

Blythe A. Corbett, Ph.D.
Department of Psychiatry
Vanderbilt Kennedy Center

24th Annual International CHADD Conference
November 8, 2012

Learning Objectives

- ADHD: Basic condition & impairments
- Autism Spectrum Disorders: Basic condition & impairments
- Attention: Relationship between attention problems, executive functioning and autism spectrum disorders
- Assessment: reliable & valid approaches, especially attention, within ASD
- Treatment: planning and novel approaches

Social Emotional NeuroScience Endocrinology (S.E.N.S.E.) lab

TABLE 1 Descriptive Statistics

<table>
<thead>
<tr>
<th>Measure</th>
<th>ADHD</th>
<th>Control</th>
<th>Univariate F</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOADQF</td>
<td>1.37</td>
<td>1.33</td>
<td>< .0001</td>
</tr>
<tr>
<td>SD</td>
<td>1.27</td>
<td>1.33</td>
<td>< .0001</td>
</tr>
<tr>
<td>TOADQc</td>
<td>2.86</td>
<td>2.84</td>
<td>p < .0001</td>
</tr>
<tr>
<td>SD</td>
<td>2.86</td>
<td>2.84</td>
<td>p < .0001</td>
</tr>
<tr>
<td>StroopW</td>
<td>47.48</td>
<td>46.27</td>
<td>p < .0001</td>
</tr>
<tr>
<td>SD</td>
<td>7.48</td>
<td>7.55</td>
<td>< .0001</td>
</tr>
<tr>
<td>StroopWC</td>
<td>42.74</td>
<td>40.53</td>
<td>p < .0001</td>
</tr>
<tr>
<td>SD</td>
<td>6.97</td>
<td>7.39</td>
<td>< .0001</td>
</tr>
</tbody>
</table>

- Symptoms of ADHD persist into adulthood.
- Many areas of executive functioning appear intact, but aspects of attention were significantly impaired in adults with ADHD.

Neuropsychological Functions in ADHD

COGNITION
Average-Above IQ

MOTOR
Hyperactivity
Motor Impersistence

PERCEPTUAL
Emotions Nuances

SOCIAL
Interupt

LANGUAGE
Talkative

MENTAL
Executive
ATTENTION
Establishing
Sustaining
Distractibility

SENSORY
Auditory

ENDOCRINOLGY (S.E.N.S.E.) lab

Neuropsychological Functions in ADHD

- Processing Affective Stimuli in Children with Attention-Deficit Hyperactivity Disorder*

<table>
<thead>
<tr>
<th>Variable</th>
<th>ADHD (SD)</th>
<th>Control (SD)</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facial Emotion</td>
<td>84 (17)</td>
<td>94 (96)</td>
<td>-0.87</td>
<td>0.39</td>
</tr>
<tr>
<td>Reading-Related</td>
<td>10.9 (3.2)</td>
<td>10.5 (3.5)</td>
<td>1.01</td>
<td>0.32</td>
</tr>
<tr>
<td>Verbal Go/No-Go</td>
<td>1.46 (0.87)</td>
<td>1.16 (1.12)</td>
<td>1.21</td>
<td>0.24</td>
</tr>
<tr>
<td>Matching Figures</td>
<td>7 (0.8)</td>
<td>7.07 (0.68)</td>
<td>0.45</td>
<td>0.66</td>
</tr>
</tbody>
</table>

*ADHD = 37 (28 boys, 10 girls); Control = 37 (29 boys, 8 girls); Matching Figures Test.
EEG Study PARTICIPANTS

- **Inclusion**: 25 children ages 8 to 12 with typical development (11) or ADHD - combined type (14) were enrolled.
- **Diagnosis**:
 - DSM-IV criteria (APA, 2000) and clinical evaluation,
 - Diagnostic Inventory Schedule for Children (DISC) (Shaffer, et al., 1996),
 - Conners’ Parent Rating Scale (Conner’s, 2001) hyperactivity and inattention scores >70
- **Estimated IQ**: Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999).
- **Medication**: Stimulant medication withheld 24 hours.

EEG to assess functional connectivity of Frontal & Visual Cortex

- **Rationale**: pathophysiological models suggest impaired functional connectivity of attention networks in ADHD
- **EEG recorded while children performed cross-modal (visual/auditory) task**
- **Power spectra of EEG in theta (3-5 Hz) and alpha (8-12 Hz) calculated for 1-sec interval after cue and before target while subject prepared to discriminate expected target**

Cross-Modal Paradigm

- **Symbolic visual cues validly or invalidly signaled the modality of an upcoming target**
 - 75% valid and 25% trials
- **Maintain fixation and use cue to prepare for upcoming target**
- **Press button right hand for Visual Target (red vs. blue target) or Auditory Target (high vs. low tone)**

Mazaheri, Mangun, Corbett (2010), Biological Psychiatry

Behavioral Performance
Both groups showed significant cuing effects for visual targets

![Graph showing behavioral performance](image)
Conclusions of EEG ADHD Study

- The functionally connectivity suggests top-down drive (i.e., midline theta) to perceptual areas (occipital alpha) setting the state of the brain to be prepared for the oncoming stimuli.
- In TD this connectivity may involve the normal functioning of the frontal-parietal attention network.
- This frontal-parietal attention network is disordered in ADHD children supporting the long-standing idea of a fundamental deficit in attentional control.

Autism DSM-IV Criteria

Qualitative impairment < 3-years in:

1. Social Interaction
 - Impaired nonverbal behavior,
 - Failure peer relationships,
 - Lack of shared enjoyment,
 - Lack social-emotional responsivity
2. Verbal & Nonverbal Communication
 - Delay, lack, repetitive, stereotyped
 - Lack ability to initiate or sustain conversation
 - Stereotypic & repetitive use
 - Lack make-believe or imitative play
3. Restricted/Repetitive/Stereotyped Behavior
 - Preoccupation with stereotype & restricted patterns
 - Inflexible routines
 - Repetitive motor
 - Preoccupation parts of objects

Comprehensive Neuropsychological Study

Three groups of children with Autism, ADHD, and Typical Development

- Attention & Response Control
- Executive functioning
- Memory
- Emotion processing
Neuropsychological Functions in Autism Spectrum Disorder (ASD)

- Motor Planning
- Incoordination
- PIQ > VIQ
- Emotions
- Faces
- Social
- Joint Attention
- Relationships
- Pragmatics
- Language
- Receptive
- Expressive
- Prosody
- Memory
- Rote
- Multimodal
- Procedural
- Executive
- Set Shifting
- Perseveration
- Mental Flexibility
- Attention
- Selective
- Shifting
- Distractibility
- Sensory
- Auditory
- Visual
- Tactile
- Cognition
- 70% < 70 IQ

Frontostriatal System
- Region developmentally vulnerable to neurodevelopmental disorders (ADHD & ASD)
 - Dorsolateral Prefrontal Cortex: executive decisions
 - Anterior Cingulate: mediating intentionality, aspects of directed attention
 - Lateral Orbitofrontal: inhibitory control, self-monitoring
 - Supplementary Motor: mediating intentional and complex movement
 - Basal Ganglia: selecting, amplifying wanted actions, inhibiting unwanted actions

Attention & Inhibition in ADHD and Autism
- Inattention and arousal may underlie some of the primary neuropathological functioning in autism (Courchesne et al., 1989; Dawson et al., 1989; Wainwright-Sharp & Bryson, 1993)
- Deficits in various aspects of attention have been associated with subtypes of autism (Bonde, 2000)

ADHD Symptoms in Autism
- Sturm, et al., 2004:
 - 95% = inattention, 86% = behavioral dysregulation, 50% = impulsivity
- Frazier, 2001:
 - 83% of children with PDD met full diagnosis for ADHD
- Yoshida & Uchiyama, 2004:
 - Majority met criteria for ADHD; 57% with autism and 85% with Asperger & PDD-NOS

Differential Diagnosis: ADHD or ASD?
- Differentiating can be challenging (Barkley, 1990; Clark et al., 1999; Gillberg, 1992; Pennington & Ozonoff, 1996; Roeyers et al., 1998).
- Increased identification of autism in ADHD may be a contributing factor in increased prevalence of ASD (Charman & Baird, 2002; Keen & Ward, 2004)
- Many children w/ASD often misdiagnosed or initially diagnosed with ADHD (Jensen, Larrieu, & Mack, 1997; Keen & Ward, 2004; Perry, 1998).
Or Both?

- A separate diagnosis of ADHD in PDD can provide clinical utility, guide treatment and encourage research into comorbidity (Ghaziuddin, Tsai, & Alessi, 1992).
- ADHD with ASD is critical to recognize because of the impact of associated problems with these disorders (Kadesjo & Gillberg, 2001).
- Possible exponential risk associated with comorbidity (Goldstein & Schwebach, 2004).

DSM-IV Criteria

Although the manual identifies short attention span, impulsivity and hyperactive behavior as part of the of the associated features of autism, a diagnosis of ADHD cannot be provided "if the symptoms of inattention and hyperactivity occur exclusively during the course of a pervasive developmental disorder" (APA, 1994; 2000).

PDD Can Evolve into ADHD

Fein et al., 2005

- 11 cases presented (3 in detail) that progress from prototypical of PDD to ADHD
- **Theoretical speculations:**
 - Comorbidity
 - Subtype of severe ADHD
 - Attentional features more difficult to remediate
 - Kinsborne (1991) attentional features core and ADHD and ASD lie on a continuum
 - PDD-ADHD subtype

Corbett & Constantine (2006).

Autism and ADHD: Assessing attention and response control with the IVA. Child Neuropsychology, 12, 1-14

GOALS:

1. Assess symptoms of ADHD (i.e., inattention and impulsivity) in children with ASD using a standardized measure
2. Assess the utility of a neuropsychological measure designed to facilitate the diagnosis of ADHD in being able to identify ADHD across diagnostic groups
3. Compare neuropsychological data to a parent report measure

IVA

Attention & Response Control

(Sandford & Turner, 2000)

Visual Attention (VA) & Auditory Attention (AA)

Visual Response Control (VRC) & Auditory Response Control (ARC)

500 Trials

Over 13 Minutes

IMPULSIVITY

| 1st Block measures impulsivity by creating a response set to a ratio of 5.25 targets (“1”) to one foil (“2”) – 84% of trials |

INATTENTION

| 2nd Block measures inattention by reversing ratio, presenting 5.25 foils (“2”) to one target (“1”) - 16% of trials |
GOALS:
1. Assess symptoms of ADHD (i.e., inattention and impulsivity) in children with ASD using a standardized measure, IVA (Sanford & Turner, 2000).
2. Assess the utility of a neuropsychological measure designed to facilitate the diagnosis of ADHD in being able to identify ADHD across diagnostic groups.

IVA Attention Quotients Across Groups

IVA Attention Quotients Across Groups

Integrated Visual Auditory CPT

Respond when you see/hear a 1, do not respond when you see/hear a 2.

<table>
<thead>
<tr>
<th>Target</th>
<th>Foil</th>
<th>1.5 sec</th>
<th><157 ms</th>
</tr>
</thead>
</table>

Impulsivity: 1st Block
Ratio of 5.25 targets (1) to one foil (2) 84% of trials

Attention: 2nd Block
Ratio of 5.25 foils (2) to one target (1) 16% of trials

Counterbalanced two-block pattern repeated 5 times for a total of 500 trials.
IV A Attention Quotients Across Groups

DFA for IVA and Conners
84.4% of original grouped cases correctly classified

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Predicted</th>
<th>Group</th>
<th>Membership</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>TYP</td>
<td>ADHD</td>
<td>ASD</td>
</tr>
<tr>
<td>TYP</td>
<td>73.3</td>
<td>20.0</td>
<td>6.7</td>
</tr>
<tr>
<td>ADHD</td>
<td>0.0</td>
<td>93.3</td>
<td>6.7</td>
</tr>
<tr>
<td>ASD</td>
<td>6.7</td>
<td>6.7</td>
<td>86.7</td>
</tr>
</tbody>
</table>

Summary
- **ATTENTION**: ASD & ADHD showed comparable deficits
- **INHIBITION**: ASD < ADHD < Typical
- **DFA**: The IVA shows good ability to discriminate the groups
- **IVA combined** with parent report improved diagnostic accuracy in ADHD

<table>
<thead>
<tr>
<th>DOMAIN</th>
<th>ADHD</th>
<th>ASD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Inhibition</td>
<td>Core to ADHD</td>
<td>Spared Impaired*</td>
</tr>
<tr>
<td>Working Memory</td>
<td>Inconclusive</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>Flexibility Shifting</td>
<td>Inconclusive</td>
<td>Impaired</td>
</tr>
<tr>
<td>Planning</td>
<td>Inconclusive</td>
<td>Impaired</td>
</tr>
<tr>
<td>Fluency</td>
<td>Inconclusive</td>
<td>Inconclusive</td>
</tr>
</tbody>
</table>

Intradimensional/Extradimensional Shift (IED)
- **IED** measures discrimination & reversal learning under conditions where participant is required to shift attention to changing patterns of visual stimuli
- The shift requires that the participant learn and respond to a new rule (e.g., shapes are no longer correct, lines are correct)
- Analogous to category shifts such as WCST
Intra-Extra Dimensional Shift
(Corbett unpublished)

Spatial Span

• A test of visual attention and short-term memory, and span for spatial items in much the same way as “digit span” for verbal items
• Participant is required to tap out a prescribed pattern of increasing length and complexity
• Analogous to the Corsi blocks

Stockings of Cambridge

• The task measures planning and behavioral inhibition.
• Top row is the model with three colored balls, bottom row moved to match the top
• Task is to move the balls to make the rows look like the model in a prescribed number of moves
• Analogous to Tower tasks

CANTAB
Stockings of Cambridge and Spatial Span

Corbett & Glidden (2000) Child Neuropsychology
Processing Affective Stimuli in Children with ADHD

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ADHD</th>
<th>TYPICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>SD</td>
<td>SD</td>
<td></td>
</tr>
</tbody>
</table>

- PICTURE OF AFFECT
 - ADHD: 0.76, SD: 0.10
 - TYPICAL: 0.89, SD: 0.06
 - t: 6.39, p: 0.000

- PROSODY
 - ADHD: 0.84, SD: 0.17
 - TYPICAL: 0.94, SD: 0.06
 - t: 3.17, p: 0.002

N = 37
26 boys, 11 girls
N = 37
19 boys, 18 girls
Summary

- ADHD:
 - Executive functioning: inhibition
 - Attention: greater impairment usually than ASD and TYP
 - Emotion: Greater impairment in complex emotions rather than basic
 - Short-Term Memory: mild-to-moderate difficulty

<table>
<thead>
<tr>
<th></th>
<th>TYPICAL N = 25</th>
<th>ADHD N = 25</th>
<th>ASD N = 25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>SD</td>
<td>MEAN</td>
</tr>
<tr>
<td>FACIAL EXPRESS</td>
<td>1.0</td>
<td>0.03</td>
<td>1.0</td>
</tr>
<tr>
<td>PROSODY HAPPY</td>
<td>0.9</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>FACES IMMED</td>
<td>12.1</td>
<td>3.2</td>
<td>11.5</td>
</tr>
<tr>
<td>FACES DELAY</td>
<td>12.1</td>
<td>2.4</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Emotion Recognition Faces and Prosody

- Autism Spectrum Disorder:
 - Executive functioning: broader more severe deficits
 - Attention & Inhibition: greater impairment in presence of ADHD symptoms
 - Emotion: Greater impairment in emotion identification especially on basic emotions (e.g., prosody happy)
 - Short-Term Memory: generally intact
Discussion

- **SYMPTOMS:**
 - Need to evaluate ADHD symptoms in ASD and vice versa
 - Identify + and -
- **DIAGNOSTIC ACCURACY:**
 - Diagnose both when warranted
- **PHENOTYPES:**
 - Evaluating subtypes may be more useful for understanding the disorders
 - Endophenotypes to guide research
- **COMORBIDITY:**
 - Critical to Exponential risks and associated problems

DSM–V ASD Proposed changes

1. Autistic disorder, Asperger's, childhood integrative disorder, and PDD-NOS be folded under term "ASD" with a single set of criteria and severity ratings.
2. Three domains become two:
 - Social/Communication Deficits
 - Fixated Interest and Repetitive Behaviors

DSM–V ADHD Proposed Changes

1. Change age onset 7 to 12
2. Change 3 subtypes to 3 current presentations
3. Add 4th presentation for restrictive inattentive
4. Change wording to accommodate lifespan relevance
5. Remove PDD from exclusion criteria
6. Information obtained from 2 different informants
7. Adjust cut point for diagnosis in adults

Acknowledgments

We thank the children and families who participate in our research!

Previous:
NIMH Career Development Award K08MH072958
The Debber Family Foundation
Perry Family Foundation
MIND Institute Investigator Initiated Grants

Current:
NIMH R01 MH085717
Hobbs Discovery Positive Psychology Grant
Autism Speaks Bakers Camp Scholarship Grant
Private Donations to SENSE Theatre

SENSE Team

- Deanna Swain, B.A.
- David Simon, B.A.
- Ashley Jenson
- Danica Chandra Denton, MD
- Dina Hany Ghoneim, MD
- Julia Evans, M.A.

Statistics

- Clayton Schupp, Ph.D.
- Lily Wang, Ph.D.
- Yanna Song, M.S.

Collaborators

- Cassandra Newsom, Psy.D.
- Catherine Coke, B.A.
- Nea Houchins-Juarez, M.A.
- Emelyn Bingham, M.A.
- Sasha Key, Ph.D.
- Kristen Merkle, B.A.
- David Zald, Ph.D.